NON-LINEAR FREE SPATIAL VIBRATIONS OF COMBINED SUSPENSION SYSTEMS*

YU.A. ROSSIKHIN and M.V. SHITIROVA

Free vibrations of a combined suspension system with a beam with stiffness which has one axis of symmetry are studied. Unlike /1/ the case of internal resonance in the system is analysed in detail. It is shown that both in this case and in the case where the frequencies of the vertical modes and the bending and twisting modes are close to each other /1/ there are two possible forms of vibrations, namely, those which are subject to phase and amplitude modulation and are accompanied by energy transmission, and those subject to phase modulation only, which allow no energy transmission.

1. In the general case of a deformed state of the suspension system (Fig.1) with shear deformations, the inertia of rotation of the cross-section of the stiff beam, and the inertia of the carrying cables neglected, the non-linear equations of free bending and twisting vibrations in dimensionless form can be written as follows /2/:

$$
\begin{gather*}
\eta^{"}+I_{x} \eta^{\prime \prime \prime \prime}-2 H_{q} \eta^{\prime \prime}+1 / 2 S_{k} q^{2} \int \eta d z-S_{k} q\left[\eta^{\prime \prime} \int \eta d z+\right. \tag{1.1}\\
\left.\varphi^{\prime \prime} \int \varphi d z+{ }^{\prime} / 2 \int\left(\eta^{\prime 2}+\varphi^{\prime 2}\right) d z\right]-S_{k}\left[\eta ^ { \prime \prime } \int \left(\eta^{2}+\right.\right. \\
\left.\left.\varphi^{\prime 2}\right) d z-2 \varphi^{\prime \prime} \int \eta^{\prime} \varphi^{\prime} d z\right]=0 \\
\varphi^{\prime \prime}+{ }^{1} 4_{4} a_{3} b^{2} s^{\prime \prime}+I_{\omega} \varphi^{\prime \prime \prime \prime}-\left[G I_{k}+2\left(c_{\psi^{2}}+1 / 4 b^{2}\right) H_{q}\right] \varphi^{\prime \prime}+ \\
1 /{ }^{1} b^{2} q^{2} S_{k} \int \varphi d z-1 / b^{2} S_{k}\left[\varphi^{\prime \prime} \int \eta d z+\eta^{\prime \prime} \int \varphi d z-\right. \\
\left.\int \eta^{\prime} \varphi^{\prime} d z\right]-1 / b^{2} S_{k}\left\{\varphi^{\prime \prime} \int\left(\eta^{\prime 2}+\varphi^{\prime 2}\right) d z+2 \eta^{\prime \prime} \int \eta^{\prime} \varphi^{\prime} d z\right]=0 \\
s^{\prime \prime}+a_{\xi} \varphi^{\prime \prime}+I_{y^{\prime \prime \prime}} s^{\prime \prime \prime}+q^{-1} s=0
\end{gather*}
$$

Here q is the weight of the bridge per unit length, $E, G, I_{x}, I_{y}, I_{k}$, and I_{ω} are the moduli of elasticity of the first and second kind, the moments of inertia with respect to the central axes x and y, the twisting moment of inertia, and the sectorial moment of intertia, respectively, H_{q} is the thrust due to a constant load in the parabolically shaped cable, b is the width of the stiff beam, c_{y} is the distance from the centre of mass of the crosssection to the horizontal median line of the cross-section, a_{y} is the coordinate of the centre of bending A, S_{k} is the stiffness of the cable, s and η are the displacements of the bending centre $A\left(0, a_{y}\right)$ along the x and y directions, φ is the angle of rotation of the cross-section around the z axis, differentiation with respect to the spatial coordinate z is denoted by an apostrophe, differentiation with respect to the time variable is denoted by a dot, and integration is always carried out over the length L of the stiff beam.

Fig. 1

To derive (1.1), the dimensional variables z, s and η were divided by the wavelength λ of the nighest mode of vibrations taken into account, the time t was divided by $\sqrt{q(E g)^{-1}}(g$ is the free fall acceleration), and the dynamical thrust was defined as in /1/ taking the non-linear terms into account.

We shall seek a solution of (1.1) of the form (the sums are from $m=1$ to $m=\infty$)

$$
\begin{gather*}
\eta(z, t)=\Sigma v_{m}(z) x_{1 m}(t), \quad \varphi(z, t)=\Sigma \theta_{m}(z) x_{2 m}(t) \tag{1.2}\\
s(z, t)=\Sigma u_{m}(z) x_{2 m}(t)
\end{gather*}
$$

Here $x_{1 m}$ and $x_{2 m}$ are the generalized displacements, v_{m}, θ_{m} and u_{m} are the vertical, twisting, and horizontal linear characteristic modes of vibrations of the suspension bridge, respectively, which satisfy the orthogonality condition

$$
\begin{equation*}
\left(p_{i}^{2}-p_{j}^{2}\right) \int\left[\theta_{i} \theta_{j}+11_{4} b^{2} u_{i} u_{j}+11_{4} a_{y} b^{2}\left(u_{i} \theta_{j}+u_{j} \theta_{i}\right)+v_{i} v_{j}\right] d z=0 \tag{1.3}
\end{equation*}
$$

where p_{i} can be equal to the characteristic frequencies of bending and twisting vibrations $\omega_{0 i}$ and $\Omega_{0 i}$.

Substituting (1.2) into the resolving Eq. (1.1) and taking (1.3) into account, we obtain a system of non-linear equations in $x_{1 i}(t)$ and $x_{2 i}(t)$, whose form is identical with the analogous system given in /1/.

If there are only two prevailing modes in the process of vibrations, namely, the n-th mode of vertical vibrations and the m-th mode of bending and twisting vibrations (the interaction between the two modes can be observed either in the case where the frequencies of the modes are close to each other or in the case of internal resonance, i.e., for $\omega_{0 n} \approx 2 \Omega_{0 m}$), then the resolving system of equations takes the form

$$
\begin{align*}
& \ddot{x_{1 n}}+\omega_{0, ~}^{2} x_{1 n}+a_{11}{ }^{n} x_{1 n}^{2}+a_{22}^{3 m} x_{2 m}^{2}+\left(b_{11}{ }^{n} x_{1 n}^{2}+b_{22}^{n m} x_{2 m}^{2}\right) x_{1 n}=0 \tag{1.4}\\
& \ddot{x_{2 m}}+\Omega_{0 m}^{2} x_{2 m}+a_{12}^{n m} x_{1 n} x_{2 m}+\left(c_{11}^{n m} x_{1 n}^{2}+c_{22}{ }^{m} x_{2 m}^{2}\right) x_{2 m}=0 \\
& \mu_{n} a_{11 n}=3 / 2 S_{k} q \int v_{n} d z \int v_{n}^{\prime 2} d z, \quad \mu_{n} a_{22}^{n m}=2 \lambda_{m} b^{-2} a_{12}^{n m}= \\
& S_{k} q\left[\int \theta_{m} d z \int \theta_{m}{ }^{\prime} v_{n}{ }^{\prime} d z+1 / 2 \int \theta_{m}{ }^{\prime 2} d z \int v_{n} d z\right] \\
& \left.\mu_{n} b_{11}{ }^{n}=S_{k} 1 \int v_{n}^{\prime 2} d z\right]^{2}, \quad \mu_{n} b_{22}{ }^{n m}=4 \lambda_{m} b^{-2} c_{11}{ }^{n m}=S_{k} \mid \int \theta_{m}{ }^{\prime 2} d z \\
& \left.\int v_{n}{ }^{\prime 2} d z+2\left(\int \theta_{m}{ }^{\prime} v_{n}{ }^{\prime} d z\right)^{2}\right], \quad 4 \lambda_{m} b^{-2} c_{22}{ }^{m}=S_{\mathrm{k}}\left[\int \theta_{m}{ }^{\prime 2} d z\right]^{2} \\
& \mu_{n}=\int v_{n}{ }^{2} d z, \lambda_{m}=\int\left(\theta_{m}^{2}+1 / 4 b^{2} u_{m}^{2}+1 /{ }_{2} a_{v} b^{2} u_{m} \theta_{m}\right) d z
\end{align*}
$$

In what follows the indices n and m will be omitted for simplicity.
For small but finite amplitudes, the solution of the system of Eqs.(1.4) can be represented by means of an expansion in various times scales in the form /3/

$$
\begin{gather*}
x_{\alpha}(t)=\varepsilon x_{\alpha_{1}}+\varepsilon^{2} x_{\alpha_{2}}+\varepsilon^{3} x_{\alpha_{3}}+\ldots ; x_{\alpha \beta}=x_{\alpha \beta}\left(T_{0}, T_{1}, T_{2}\right), \tag{1.5}\\
\alpha=1,2 ; \beta=1,2, \ldots
\end{gather*}
$$

where ε is a small parameter of the order of the amplitudes and

$$
T_{n}=\varepsilon^{n} t(n=0,1,2 \ldots)
$$ serve as new independent variables.

Taking into account that

$$
\begin{gathered}
d / d t=D_{0}+\varepsilon D_{1}+\varepsilon^{3} D_{2}+\ldots, d^{2} / d t^{2}=D_{0}^{2}+2 \varepsilon D_{0} D_{1}+\varepsilon^{2}\left(D_{1}^{2}+\right. \\
\\
\left.2 D_{0} D_{2}\right) \mid \ldots
\end{gathered}
$$

substituting (1.5) into (1.4), and equating to zero the coefficients of $\varepsilon, \varepsilon^{2}$, and ε^{3}, we find that

$$
\begin{gather*}
D_{0}{ }^{2} x_{\alpha 1}+\zeta_{\alpha}{ }^{2} x_{\alpha 1}=0, \quad \zeta_{1}=\omega_{0}, \quad \zeta_{2}=\Omega_{0} \tag{1.6}\\
D_{0}{ }^{2} x_{12}+\zeta_{1}{ }^{2} x_{12}=-2 D_{0} D_{1} x_{11}-a_{11} x_{11}{ }^{2}-a_{22} x_{21}{ }^{2} . \tag{1.7}\\
D_{0}{ }^{2} x_{22}+\zeta_{2}{ }^{2} x_{22}=-2 D_{0} D_{1} x_{21}-a_{12} x_{11} x_{21} \\
D_{0}{ }^{2} x_{13}+\zeta_{1}{ }^{2} x_{13}=-2 D_{0} D_{1} x_{12}-\left(D_{1}{ }^{2}+2 D_{0} D_{2}\right) x_{11}- \\
2 a_{11} x_{11} x_{12}-2 a_{22} x_{21} x_{22}-b_{11} x_{11}{ }^{3}-b_{22} x_{21}{ }^{2} x_{11} \\
D_{0}{ }^{2} x_{23}+\zeta_{2}{ }^{2} x_{23}=-2 D_{0} D_{1} x_{22}-\left(D_{1}{ }^{2}+2 D_{0} D_{2}\right) x_{21}- \tag{1.8}\\
a_{12}\left(x_{12} x_{22}+x_{12} x_{21}\right)-c_{11} x_{11}{ }^{2} x_{21}-c_{22} x_{21}{ }^{3}
\end{gather*}
$$

We will seek a solution of (1.6) in the form

$$
\begin{equation*}
x_{\alpha_{1}}=A_{\alpha}\left(T_{1}, T_{2}\right) \exp \left(i \zeta_{\alpha} T_{0}\right)+\hat{I}_{\alpha}\left(T_{1}, T_{2}\right) \exp \left(-i \zeta_{\alpha} T_{0}\right) \tag{1.9}
\end{equation*}
$$

where A_{α} are unknown complex functions and \bar{A}_{α} are the corresponding complex conjugate functions.

Substituting (1.9) into (1.7) we find that

$$
\begin{gather*}
D_{0}{ }^{2} x_{12}+\zeta_{1}{ }^{2} x_{12}=-2 i \zeta_{1} D_{1} A_{1} \exp \left(i \zeta_{1} T_{0}\right)-a_{11}\left[A_{1}{ }^{2} \exp \left(2 i \zeta_{1} T_{0}\right)+\right. \tag{1.10}\\
\left.A_{1} \bar{A}_{1}\right]-a_{22}\left[A_{2}{ }^{2} \exp \left(2 i \zeta_{2} T_{0}\right)+A_{2} \bar{T}_{2}\right]+\mathrm{cc} \\
D_{0}{ }^{2} x_{22}+\zeta_{2}{ }^{2} x_{22}=-2 i \zeta_{2} D_{1} A_{2} \exp \left(i \zeta_{2} T_{0}\right)- \\
a_{12}\left\{A_{1} A_{2} \exp \left\{i\left(\zeta_{1}+\zeta_{2}\right) T_{0}\right]+A_{1} A_{2} \exp \left[i\left(\zeta_{1}-\zeta_{2}\right) T_{0}\right]\right\}+\mathrm{cc}
\end{gather*}
$$

where cc denote the complex conjugate parts of the preceding terms.
2. We will consider the case of internal resonance, which occurs for $\zeta_{1} \approx 2 \zeta_{2}$, We will first assume that there are either two symmetric forms of vibrations or a symmetric form of vertical vibrations and a skew-symmetric form of bending and twisting vibrations taking part in the resonance. This implies that the coefficients a_{12} and a_{22} in (1.4) are non-zero. Since in this case the non-linearity of the equations determining the amplitudes manifests itself at the first step, it follows that to construct the solution, it suffices to restrict ourselves to terms of order ε^{2}. As a result, we arrive at relations (1.9) and Eqs. (1,10) (Eqs.(1.8) are not used), in which A_{α} are functions of T_{1} only.

Taking into account that $\zeta_{1}=2 \zeta_{2}+\varepsilon \sigma$, where σ is the frequency detuning, we consider the expressions on the right-hand sides of Eqs.(1.10).

The functions $\exp \left(i \zeta_{1} T_{0}\right)$ and $\exp \left(i \zeta_{2} T_{0}\right)$ appearing in these expressions generate the secular terms, and so the coefficients of these functions must be equal to zero. As a result, we get

$$
\begin{align*}
& 2 i \zeta_{1} D_{1} A_{1}+a_{22} A_{2}{ }^{2} \exp \left(-i \sigma T_{1}\right)=0 \tag{2.1}\\
& 2 i \zeta_{2} D_{1} A_{2}+a_{12} A_{1} \cdot \overline{\mathrm{I}}_{2} \exp \left(i \sigma T_{1}\right)=0
\end{align*}
$$

In (2.1) we replace the functions A_{α} by $A_{\alpha} \exp \left(i \sigma T_{1}\right)$, respectively. Then the expressions $\exp \left(\pm i \sigma T_{1}\right)$ disappear from the equations. We multiply the first equation by \bar{A}_{1} and the second by \bar{A}_{2}, and we find the conjugate equations. First, we add the two pairs of mutually conjugate equations to each other and we then subtract one from another. As a result of the procedure described above, expressing A_{α} in the polar form $A_{\alpha}=a_{\alpha} \exp \left(i \varphi_{\alpha}\right)$, we arrive at the following system of four differential equations in a_{α} and φ_{α} :

$$
\begin{gather*}
\zeta_{1} a_{1}{ }^{2}+a_{22} a_{2}{ }^{2} a_{1} \sin \gamma=0, \zeta_{\zeta} a_{2}{ }^{2}-a_{12} a_{2}{ }^{2} a_{1} \sin \gamma=0 \tag{2.2}\\
\varphi_{1}^{*}+\sigma-1 / a_{23} \zeta_{1}^{-1} a_{2}^{2} a_{1}{ }^{-1} \cos \gamma=0 \\
\varphi_{2}^{*}+\sigma-1 / a_{12} \zeta_{2}{ }^{-1} a_{1} \cos \gamma=0\left(\gamma=2 \varphi_{2}-\varphi_{1}\right)
\end{gather*}
$$

where the dots denote differentiation with respect to T_{1}.
From the first two equations of system (2.2) we find that

$$
\begin{gather*}
a_{1}=\sqrt{\overline{W \xi}}, a_{2}=\sqrt{a_{12} \xi_{1}\left(a_{22} \xi_{2}\right)^{-1} W(1-\xi)} \tag{2.3}\\
\xi=-a_{12} \xi_{2}^{-1}(1-\xi) \sqrt{\overline{W \xi}} \sin \gamma\left(W=a_{1}{ }^{2}+a_{22} \xi_{2}\left(a_{12} \xi_{1}\right)^{-1} a_{2}{ }^{2}\right)
\end{gather*}
$$

where W is the energy of the system.
From the third and fourth equations of (2.2) we get

$$
\gamma^{*}=-1 / 2 a_{12} \xi_{2}^{-1} W(1-3 \xi)(W \xi)^{-1 / 2} \cos \gamma-\sigma
$$

Using the expression

$$
\dot{\gamma}=\frac{d \gamma}{d \xi} \xi=a_{12} \zeta_{2}^{-1}(1-\xi) \sqrt{\bar{W} \xi} \frac{d \cos \gamma}{d \xi}
$$

for the derivative and integrating the equation, we find that

$$
\begin{equation*}
\cos \gamma=-\frac{\sigma_{2}}{a_{12} \sqrt{W}} \frac{\sqrt{\xi}}{(1-\xi)}+\frac{G}{\sqrt{\xi}(1-\xi)} \tag{2.4}
\end{equation*}
$$

where G is an arbitrary constant, which can be determined from the initial conditions.
Expression (2.4) determines the amplitude-versus-phase dependence for the vibrations subjected both to phase and amplitude modulation and described by Eqs.(2.2).

To determine time dependence of the amplitudes and phases, it is necessary to substitute (2.4) into the third relation in (2.3), from which one can find ξ as a function of T_{1} by integrating the equation. Using the function $\xi\left(T_{1}\right)$ in the first two formulae in (2.3) and in Eqs.(2.2), we find $a_{\alpha}\left(T_{1}\right)$ and $\varphi_{\alpha}\left(T_{1}\right)$.

We will now assume that the resonance involves either two skew-symmetric forms of vibrations or an asymmetric form of vertical vibrations along with a symmetric form of bending and twisting vibrations. The coefficients a_{11}, a_{12}, and a_{22} in (1.4) are equal to zero. In this case the system of Eqs. (2.1) yields $D_{1} A_{\alpha}=0$, i.e., A_{α} are independent of T_{1}. To determine the dependence of A_{α} on T_{2} it is necessary to invoke the terms of order ε^{3} and use the
system of Eqs.(1.8). To avoid any secular terms which may appear in the solution of this system, one should equate the coefficients of $\exp \left(\pm i \zeta_{\alpha} T_{2}\right)$ to zero. Hence, we obtain the system of equations

$$
\begin{aligned}
& 2 i \zeta_{1} A_{1}^{*}+3 b_{11} A_{1}^{2} \bar{A}_{1}+2 b_{22} A_{2} \bar{A}_{2} A_{1}=0 \\
& 2 i \zeta_{2} A_{2}^{*}+2 c_{11} A_{1} \bar{A}_{1} A_{2}+3 c_{22} A_{2}{ }^{2} \bar{A}_{2}=0
\end{aligned}
$$

Repeating for this system the operations which were applied to the system of Eqs.(2.1), we get

$$
\begin{gather*}
a_{\alpha}=\text { const }, \varphi_{1}=\omega_{1}=3 / 2 b_{11} \zeta_{1}{ }^{-1} a_{1}{ }^{2}+b_{22} \zeta_{1}^{-1} a_{2}{ }^{4} \tag{2.5}\\
\varphi_{2}{ }^{*}=\omega_{2}=c_{11} \zeta_{2}^{-1} a_{1}^{2}+{ }^{3} /{ }_{2} c_{22} \zeta_{2}{ }^{-1} a_{2}^{2}
\end{gather*}
$$

where the dots denote differentiation with respect to T_{2}.
On the basis of (2.5) the expressions for the generalized displacements can be written in the form

$$
\left.x_{\alpha}(t)=2 a_{\alpha} \varepsilon \cos 1\left(\zeta_{\alpha}+\varepsilon^{2} \omega_{\alpha}\right) t+\varphi_{\alpha_{0}}\right]+O\left(\varepsilon^{3}\right)
$$

where foa are the initial phases.
3. For comparison we will consider the vibrations in the case of two modes of vertical vibrations and bending and twisting vibrations with similar frequencies interacting with each other, i.e., in the case where

$$
\begin{equation*}
\omega_{0}=\Omega_{0}+\sigma \varepsilon^{2} \tag{3.1}
\end{equation*}
$$

To analyse this case, we shall use the systems of Eqs.(1.6)-(1.8). In order that the solutions satisfying these systems do not contain any secular terms, it is necessary that the relations

$$
\begin{align*}
& -i A_{1}{ }^{*}-\lambda_{1} A_{1}{ }^{2} \bar{A}_{1}-\lambda_{2} A_{1} A_{2} \bar{A}_{2}+{ }^{1} \Gamma_{1} A_{1} A_{2}{ }^{2} \exp \left(-2 i \sigma T_{2}\right) \cdots 0 \tag{3.2}\\
& -i A_{2}{ }^{\circ}-\lambda_{3} A_{1} \bar{H}_{1} A_{2}-\lambda_{1} A_{2}{ }^{2} \tilde{A}_{2}+{ }^{1} / 4 \Gamma_{2} A_{1}{ }^{2} \tilde{A}_{2} \exp \left(2 i \sigma T_{2}\right)=0 \\
& \lambda_{1}=\frac{3 b_{11}}{2 \omega_{0}}-\frac{5 a_{11}{ }^{2}}{3 \omega_{0}^{3}}, \quad \lambda_{2}=\frac{b_{32}}{\omega_{0}}-\frac{2 a_{11} a_{22}}{\omega_{0}^{3}}-\frac{2 a_{12} \alpha_{22}}{3 \omega_{0} \alpha_{0}^{2}} \\
& \lambda_{3}=\frac{c_{11}}{\Omega_{9}}-\frac{a_{11^{2}}}{3 \Omega_{6}{ }^{3}}-\frac{a_{11} a_{33}}{\Omega_{0} \omega_{8}{ }^{2}}, \quad \lambda_{4}=\frac{3 c_{22}}{2 \Omega_{8}}-\frac{5 a_{12} a_{22}}{6 \Omega_{0} \omega_{6}{ }^{2}} \\
& \Gamma_{1}=\frac{4 a_{12} a_{22}}{\omega_{0} \Omega_{0}{ }^{2}}-\frac{4 a_{11} a_{22}}{3 \omega_{0}{ }^{3}}-\frac{2 b_{22}}{\omega_{0}}, \quad \Gamma_{2}=\frac{2 a_{12}{ }^{2}}{\Omega_{0}{ }^{3}}-\frac{2 a_{11} 1_{12}}{3 \omega_{0}{ }^{2} \Omega_{0}}-\frac{2 c_{11}}{\Omega_{0}}
\end{align*}
$$

be satisfied. Here A_{α} depend on T_{2} and the dots denote differentiation with respect to T_{2}.
If A_{2} is replaced by $A_{2} \exp \left(i \sigma T_{2}\right)$ in Eqs. (3.2), then the expressions $\exp \left(\pm 2 i \sigma T_{2}\right)$ disappear. For the resulting system we repeat the operations which were applied in the case of the system of Eqs. (2.1) to find that

$$
\begin{gather*}
\left(a_{1}{ }^{2}\right)^{\cdot}-1 / 2 \Gamma_{1} a_{1}{ }^{2} a_{2}{ }^{2} \sin 2 \gamma=0, \quad\left(a_{2}{ }^{2}\right)^{0}+1 / 2 \Gamma_{2} a_{1}{ }^{2} a_{2}{ }^{2} \sin 2 \gamma=0 \tag{3.3}\\
\varphi_{1}{ }^{4}-\lambda_{1} a_{1}{ }^{2}-\lambda_{2} a_{2}{ }^{2}+1 / 4 \Gamma_{1} a_{2}{ }^{2} \cos 2 \gamma=0\left(\gamma=\varphi_{2}-\varphi_{1}\right) \\
\varphi_{2}{ }^{2}-\lambda_{3} a_{1}{ }^{2}-\lambda_{1} a_{2}{ }^{2}+1 / 4 \Gamma_{2} a_{1}{ }^{2} \cos 2 \gamma+\sigma=0
\end{gather*}
$$

From (3.3) we have

$$
\begin{gather*}
a_{1}=\sqrt{W \xi}, a_{2}=\sqrt{\Gamma_{2} \Gamma_{1}{ }^{-1} W(1-\xi)} \tag{3.4}\\
\xi=1 / 2 \Gamma_{2} W \xi(1-\xi) \sin 2 \gamma\left(W=a_{1}{ }^{2}+\Gamma_{2} \Gamma_{2}{ }^{-1} a_{2}{ }^{2}\right) \tag{3.5}\\
\gamma^{*}=1 / 4 \Gamma_{2} W(1-2 \xi) \cos 2 \gamma-\left(\lambda_{1}-\lambda_{3}\right) W \xi- \\
\Gamma_{2} \Gamma_{1}{ }^{-1}\left(\lambda_{2}-\lambda_{4}\right) W(1-\xi)-\sigma \tag{3.6}
\end{gather*}
$$

(W is the energy of the system).
Using in (3.6) the expression for the derivative $\gamma^{*}=\xi \cdot d \gamma / d{ }_{6}$ and taking (3.5) into account, after integrating the equation, we find the following amplitude-versus-phase dependence for the vibrations subjected to phase and amplitude modulation /1/:

$$
\begin{equation*}
\cos 2 \psi=\frac{4 \sigma}{\Gamma_{2} W} \frac{1}{(1-\xi)}-\frac{2\left(\lambda_{2}-\lambda_{1}\right)}{\Gamma_{2}} \frac{\xi}{(1-\xi)}-\frac{2\left(\lambda_{2}-\lambda_{4}\right)}{\Gamma_{1}} \frac{(1-\xi)}{\xi}+\frac{G}{\xi(1-\xi)} \tag{3.7}
\end{equation*}
$$

where G is an arbitrary constant，which can be found from the initial conditions．
Relation（3．7）determines the amplitude－versus－phase dependence for the vibrations sub－ jected both to phase and amplitude modulation and described by Eqs．（3．3）．

To find the time dependence of the amplitudes and phases，it is necessary to substitute （3．7）into Eq．（3．5），from which one can obtain the dependence of ξ on T_{2} by integrating the equation．Using the function $\xi\left(T_{2}\right)$ in（3．4）and（3．5），we can find $a_{\alpha}\left(T_{2}\right)$ and $\varphi_{\alpha}\left(T_{2}\right)$ ．

4．As an example we consider the free vibrations of the following suspension bridges： ＂The Golden Gate＂in San Francisco，whose length is 1281 m （Table 1）and＂Vincent Thomas＂in Los Angeles，which is 557.5 m long（Table 2）．In Tables 1 and 2 the resonance frequencies of these bridges and the frequencies of vertical and twisting vibrations，which are close one to another，are listed along with the corresponding modes．The twisting modes at resonance frequencies are not given in Table 1，since in all cases except the third one they are identical with the twisting modes for the characteristic frequencies which are close to one another．In the third case the character of the behaviour of the twisting mode with the fre－ quency $\Omega_{03}^{a s}=2.4$ resembles the character of the behaviour of the vertical mode with frequency
$\omega_{03}^{a s}$ given in Table 2．We note that there are no resonance modes in the frequency spectrum of the＂Vincent Thomas＂bridge／1／．

Table 1

Similar characteristic frequencies rad／s	Resonance frequencies $\mathrm{rad} / \mathrm{s}$
$\omega_{03}^{\omega_{03}^{\mathbf{5}}=1.60}$	$\begin{aligned} & \omega_{06}^{\mathrm{s}}=2.62 \\ & \sim \end{aligned}$
$\begin{array}{ll} \omega_{04}^{\mathbf{s}}=1,80 & 9_{02}^{\mathbf{s}}=1,80 \\ \sim \sim \omega & \sigma \sim \end{array}$	$\omega_{07}^{s}=3.75$ cancran
$\begin{array}{ll} \omega_{05}^{5}=2.61 \\ \sim \sim V & \sigma_{c 5}^{\mathbf{s}}=2.61 \\ \sim \cap n \end{array}$	$\omega_{c s}^{\mathbf{s}}=4.66$ ヘヘロッターロ
$\begin{array}{ll} \omega_{02}^{\mathrm{as}}=1.14 \\ 0 & \Omega_{01}^{\mathrm{as}}=1.7 \\ 0 \end{array}$	$\begin{aligned} & \omega_{06}^{a s}=3.15 \\ & \square ת \square \end{aligned}$
$\begin{array}{ll} \omega_{04}^{\mathrm{as}}=2.11 & \Omega_{02}^{\mathrm{as}}=2.1 \\ \sim \cap & \Omega \end{array}$	$\omega_{07}^{a s}=4.41$ जnant

Table 2
Similar characteristic frequencies rad／s

$\omega_{04}^{\mathbf{s}}=2.88$	$\Omega_{00}^{\mathbf{s}} \bar{r}^{\mathbf{5}} .98$
$\infty \sim$	\longrightarrow
$\omega_{05}^{5}=5.07$	$3^{\text {a }}{ }_{02}=6.25$
\cdots	$\infty \sim$
$\omega_{06}^{\mathbf{s}}=6.92$	$\Omega_{0=1}^{\mathbf{5}}=6.64$
θ	$\cdots \infty$
$\omega_{03}^{\text {as }}=3.4 \hat{0}$	$s_{001}^{\text {as }}=4.0$
\xrightarrow{N}	\rightarrow
$\omega_{0.1}^{\text {as }}=0.32$	$s_{00}^{\text {as }}=0.23$
\square－	$\square \longrightarrow$

In the case of resonance interaction of the sixth symmetric mode of vertical vibrations with the first symmetric mode of twisting vibrations（Fig．2，（a－e）and also in the cases where the second skew－symmetric form of vertical vibrations is close to the first skew－sym－ metric form of twisting vibrations（Fig．3，（a－e）and the fourth symmetric form of vertical vibrations is close to the second symmetric form of twisting vibrations（Fig．4，（a－e）the graphs of the dependence on T_{1} and T_{2} of the quantities ξ（the solid lines）and $1-\xi$（the broken lines），which are proportional to the squares of the amplitudes a_{1} and a_{2} ，respectively， are constructed on the basis of the data in Table 1 for various initial values $\xi_{0}\left(\cos \%_{0}=1\right)$ ．

From the graphs one can see that in the case of internal resonance for $\xi_{0}=1 / 3$（Fig．2c） and in the case of similar frequencies $\omega_{02}^{a s} \approx \Omega_{01}^{a s}$ for $\xi_{0}=0.174$（Fig．3b）steady－state conditions are realized，which can be characterized by constant amplitudes（frequency modulation）．In both cases the direction of energy transmission changes to the opposite one at the correspond－ ing instants of time as t_{0} passes through the steady－state mode．Despite the fact that the behaviour of the amplitudes is qualitatively similar in these two cases，considerable quanti－ tative differences can be observed．Namely，in the case of internal resonance the energy transmission from one of the subsystems to the other is more intensive（the peak－to－peak scope of the amplitudes is larger）and faster（the time scale is smaller）than in the case of similar frequencies．

For $\omega_{114}^{s} \approx \Omega_{02}{ }^{\mathbf{s}}$（Fig．4，（a－e）there are no steady－state conditions（there is no fre－ quency modulation），and so there is no initial value ξ_{0} such that the direction of energy
transmission changes as one passes through this value. It is seen that this case differs both qualitatively and quantitatively from the case of internal resonance.

We shall analyse the stationary regimes $a_{\alpha}=$ const both in the case of internal resonance and in the case of similar frequencies. It follows from (2.2) that $\gamma=0$ and $\varphi_{\alpha}=$ const. Setting $\varphi_{2}^{*}=\omega\left(\varphi_{2}=2 \omega\right)$ and $a_{2} \because a$, we find from (2.2) the relation

$$
\begin{equation*}
(2 \omega+\sigma)(\omega+\sigma)-1_{4}^{\prime} a_{12} a_{22} \omega_{0}^{-1} \Omega_{0}^{-1} a^{2}-u \tag{4.1}
\end{equation*}
$$

between the amplitude, the frequency, and the detuning. Next, using (1.5) and (1.9), we obtain the following expressions for the generalized displacements corresponding to the amplitude-versus-phase dependence (4.1):

$$
\begin{aligned}
& x_{1}(t)=4 \Omega_{0} a_{12}{ }^{-1} \varepsilon(\omega-\sigma) \cos 2 \chi t+8 / 3 a_{11} \Omega_{0}{ }^{2} a_{12}{ }^{-2} \omega_{0}{ }^{-2}(\omega ; \\
& \sigma)^{2} \varepsilon^{2} \cos 4 \chi^{t}-2 \varepsilon^{2} a_{12}{ }^{-2} \omega_{0}^{-2}\left[4 a_{11} \Omega_{0}^{2}(\omega+\sigma)^{2}+a_{12}{ }^{2} a_{22} a^{2}\right] \cdots O\left(\varepsilon^{3}\right) \\
& x_{2}(t)=2 a c \cos \chi^{i}+{ }_{i_{2}} a \varepsilon^{2}(\omega+\sigma) \Lambda_{0}^{-1} \cos 3 \chi t+O\left(\varepsilon^{3}\right) \\
& X=1_{i}\left[\omega_{3}-\left(2 \omega_{-}-\sigma\right) \varepsilon\right]=\Omega_{0}+(\omega+\sigma) \varepsilon
\end{aligned}
$$

where x is the frequency of the non-linear vibrations subject to phase modulation only.
The dependence of the square of the amplitude a on the magnitude of detuning σ computed from (4.1) for various values of ω is shown in Fig.5. The nunerical values of ω are written next to the corresponding curves and $a_{12} a_{22}\left(4 \omega_{0} \Omega_{0}\right)^{-1}$ is taken to be equal to one. one can see that the character of the amplitude-versus-frequency dependence is determined by the degree of stiffness or softness of the frequency characteristics of the combined suspension system (a soft characteristic corresponds to a negative value of ω and a stiff characteristic corresponds to a positive value).

For $a_{\alpha}=$ const, we find from (3.3) the relations

$$
\begin{gather*}
\lambda_{1} a_{1}^{2}+\left(\lambda_{2}-1 / 4 \Gamma_{1}\right) a_{2}^{2}=x \tag{4.2}\\
\left(\lambda_{3}-1 / 4 \Gamma_{2}\right) a_{1}^{2}+\lambda_{1} a_{2}^{2}=x+\sigma
\end{gather*}
$$

between the amplitudes a_{1} and a_{2}, the frequency $\gamma_{0}=q_{1}{ }^{*}=q_{2}{ }^{\circ}$, and the detuning σ.

Fig. 5

Fig. 6

Bridge	Symmetric characteristic forms			Skew-symmetric characteristic forms	
"Golden Gate"	$\omega_{03}^{s}=6.63 \times 10^{-4}$	$\omega_{01}^{\mathbf{s}}=7.50 \times 10^{-4}$	$\omega_{05}^{\mathbf{s}}=10.82 \times 10^{-4}$	$\omega_{02}^{145}=4.73 \times 10^{-4}$	$\omega_{04}{ }^{\text {ms }}=8.74 \times 10^{-4}$
	$-1.52 \times 10^{-2} \leqslant 8^{3} x \leqslant+\infty$	no frequenc	modulation	$2,33 \times 10^{-5} \leqslant \varepsilon^{2} x \leqslant 2.34 \times 10^{-3}$	$8.98 \times 10^{-0} \leqslant \varepsilon^{2} \times \leqslant 8.99 \times 10^{-5}$
	$\Omega_{01}^{5}-5.51 \times 10^{-4}$	$0_{02}^{8}=3.58 \times 10^{-4}$	$S_{23}^{\mathbf{s}}=10.81 \times 10^{-4}$	$\Omega_{01}^{a s}=4.85 \times 10^{-4}$	$9_{02}^{\text {ass }}-9.07 \times 10^{-4}$
"Vincent Thomas"	$\mathrm{m}_{04}^{5}=6.66 \times 10^{-4}$	$\omega_{05}^{5}-11.73 \times 10^{-4}$	$\omega_{06}^{5}-16.01 \times 10^{-4}$	$\Omega_{03}^{\text {as }}=8.01 \times 10^{-4}$	$\omega_{01}^{\prime s}=13.01 \times 10^{4}$
	$0.37 \times 10^{-4} \leqslant \varepsilon^{2} x \leqslant+\infty$	$6.27 \times 10^{-4} \leqslant e^{2} x \leqslant-!\infty$	no frequency modulation	$2.496 \times 10^{-4} \leqslant t^{2} x \leqslant 2.498 \times 10^{-4}$	$\begin{array}{r} -3.427 \times 10^{-4} \leqslant \varepsilon^{2} \mu \leqslant \\ \leqslant-3.428 \times 10^{-1} \leqslant \end{array}$
	$0_{01}^{8}-6.92 \times 10^{-3}$	$4{ }_{02}^{5}=14.46 \times 10$ -	$0{ }_{64}^{8}-15.36 \times 10^{-4}$		$9_{02}^{125}-14.42 \times 104$

Using formulae (1.5), (3.1), (1.9), and Eqs.(1.10), we obtain the following expressions for the generalized displacements corresponding to the amplitude-versus-frequency relations (4.2):

$$
\begin{gather*}
x_{1}(t)=2 \varepsilon a_{1} \cos \beta t-12\left(\varepsilon a_{1}\right)^{2}(\cdots+1+1 / 3 \cos 2 \beta t) a_{11} \omega_{0}-2+ \tag{4.3}\\
\left.2\left(\varepsilon a_{2}\right)^{2} 1-1+1 / g \cos 2\left(\beta-\sigma \varepsilon^{2}\right) t\right] a_{22} \omega_{0}-2+O\left(\varepsilon^{3}\right) \\
\left.x_{2}(t)=2 \varepsilon a_{2} \cos \beta t+2 \varepsilon^{2} a_{1} a_{2}-1-1-1 / 3 \cos 2 \beta t\right) a_{12} s_{a_{1}}-1 O\left(\varepsilon^{n}\right) \\
\beta \cdots \omega_{0}+x \varepsilon^{2}-\Omega_{0}+x \varepsilon^{2}+\sigma \varepsilon^{2}
\end{gather*}
$$

where β is the frequency of non-linear vibrations, which is the same for the vertical vibrations and the bending and twisting vibrations.

The results of the analysis of the vibrations subject to frequency modulation only based on the data in Tables 1 and 2 are collected in Table 3. It can be seen that the domain of existence of the solution determined by (4.2) and (4.3) is reduced to a point for every skewsymmetric characteristic form of vibrations (such vibrations are possible for one value of the frequency \quad), and either extends to infinity or disappears completely for every symmetric form of characteristic vibrations.

Therefore, in the case of similar frequencies the non-linear vibrations (4.3) subject to frequency modulation can be realized for the given values $\omega_{n n}$. $\Omega_{n n}$ and a only, while, as can be seen from (4.1), in the case of internal resonance such vibrations can be excited for any values of $\omega_{\mathrm{tm}}, \Omega_{\theta m}$ and σ. These results are consistent with the graphs in Figs.2-4.

Finally, we mention that the regime of vibrations in the case of similar frequencies turns out to be more stable under variations of the level of mistuning than the regime of vibrations in the case of internal resonance. This is evident from the graphs of the time dependence of the amplitude function envelopes for the following three values of detuning: $\varepsilon^{2} \sigma$: -0.5×10^{-4} (the broken line), $\sigma \quad 0 \quad$ (the solid line), and $\varepsilon^{2} \sigma \cdots 0.5 \times 10^{-4}$ (the dashdot line), which are given in Fig. 6 for the case of internal resonance ($\left.a_{1}\left(T_{1}\right): 0.0\right)$ and the case of similar frequencies $\left(a_{1}\left(r_{2}\right) \geqslant 0.02\right)$. One can see that even a slight violation of the resonance condition $\omega_{"},: 2 \Omega_{0}$ results in the maxima of the amplitude functions being immediately reduced to zero.

REFERENCES

1. ABDEL-GHAFFAR A.M. and RUBIN L.I., Non-linear free vibrations of suspension bridges: theory and application, J. Eng. Mech. Amer. Soc. Civil Eng., 109, 1, 1983.
2. SHITIKOVA M.V., Computation of free spatial vibrations of suspension bridges with displacement deformations and the inertia of rotation of the rigid beam taken into account, Applied Problems in Construction Theory, Izd. Voronezh Gos. Univ., Voronezh, 1987.
3. NAYFEH A.H., Perturbation Methods, Wiley, New York-London-Sydney, 1973.

Translated by T. 7.

STRESSES IN ELASTIC CONICAL TUBES OF TRANSVERSELY ISOTROPIC MATERIALS WITH SPHERICAL ANISOTROPIES UNDER TEMPERATURE AND FORCE LOADINGS*

I.V. PANFEROV

Analytic solutions are proposed for a number of new problems on determining the state of stress of a transversely-isotropic hollow cone with spherical anisotropy. An exact solution of the problem of the axisymmetric deformation of a long conical tube (or continuous cone) from an elastic transversely-isotropic material with spherical anisotropy subjected to an axial force is obtained in a spherical coordinate system $k, 4,0$; the material axis of symmetry is directed along the spherical radius R. A rigorous solution is given of the problem of the uniform heating of a conical tube of transversely-isotropic material with spherical anisotropy for particular values of poisson's ratios; the material axis of symmetry is directed along the θ-axis. For arbitrary Poisson's ratios an asymptotic solution is found for the temperature problem for a tube with small conicity.

[^0]
[^0]: *Prikl.Matem.Mekhan., 54,6,1012-1016,1990

