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NON-LINEAR FREE SPATIAL VIBRATIONS OF COMBINED SUSPENSION SYSTEMS" 

Yl3.A. ROSSIKHIN and M.V. SHITIKOVA 

Free vibrations of a combined suspension system with a beam with 
stiffness which has one axis of symmetry are studied. Unlike /I/ the 
case of internal resonance in the system is analysed in detail. It is 
shown that both in this case and in the case where the frequencies of 
the vertical modes and the bending and twisting modes are close to each 
other /l/ there are two possible forms of vibrations, namely, those 
which are subject to phase and amplitude modulation and are accompanied 
by energy transmission, and those subject to phase modulation only, 
which allow no energy transmission. 

1. In the general case of a deformed state of the suspension system (Fig.11 with shear 
deformations, the inertia of rotation of the cross-section of the stiff beam, and the inertia 
of the carrying cables neglected, the non-linear equations of free bending and twisting 
vibrations in dimensionless form can be written as follows 121: 

Here q is the weight of the bridge per unit length, E, G, I,, I,, It, and I, are the 
moduli of elasticity of the first and second kind, the moments of inertia with respect to 
the central axes L& and y, the twisting moment of inertia, and the sectorial moment of intertia, 
respectively, Hs is the thrust due to a constant load in the parabolically shaped cable, b 
is the width of the stiff beam, cy is the distance from the centre of mass of the cross- 
section.to the horizontal median line of the cross-section, a, is the coordinate of the centre 
of bending A, SI, is the stiffness of the cable, s and 9 are the displacements of the 
bending centre A @,a,) along the x and y directions, cp is the angle of rotation of the 
cross-section around the z axis, differentiation with respect to the spatial coordinate z is 
denoted by an apostrophe, differentiation with respect to the time variable is denoted by a 
dot, and integration is always carried out over the length L of the stiff beam. 

To derive (l.l), the dimensional variables 2, s and IJ were 
divided by the wavelength h of the highest mode of vibrations 
taken into account, the time t was divided by l/q (Eg)-1 (g is the 
free fall acceleration), and the dynamical thrust was defined as 
in /l/ taking the non-linear terms into account. 

We shall seek a solution of (1.1) of the form (the sums are 
from in=l to m= M) 

Fig.1 

Here q, and X2??? are the generalized displacements, %X7 em 
and U, are the vertical, twisting, and horizontal linear character- 
istic modes of vibrations of the suspension bridge, respectively, 
which satisfy the orthogonality condition 

(Pi” - pj’) s [e&?j -I- ‘!,b%+j +- ‘14a,b2 (Ui@j + u&i) _t u~u~I do =: 0 
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where JJi can be equal to the characteristic frequencies of bending and twisting vibrations 

%i and QOi. 
Substituting (1.2) into the resolving Eq.(l.l) and taking (1.3) into account, we obtain 

a system of non-linear equations in rlt (t) and 5i (Q, whose form is identical with the 
analogous system given in /l/. 

If there are only two prevailing modes in the process of vibrations, namely, the n-th 
mode of vertical vibrations and the m-th mode of bending and twisting vibrations (the inter- 
action between thetwo modes can be observed either in the case where the frequencies of the 
modes are close to each other or in the case of internal resonance, i.e., for %n = 2&L), 
then the resolving system of equations takes the form 

In what follows the indices n and m will be omitted for simplicity. 
For small but finite amplitudes, the solution of the system of Eqs.(1.4) can be rep- 

resented by means of an expansion in various times scales in the form /3/ 

Xa (t) = EXal + ESXaZ + E3Xa, + . .; Jafi = .Tap (T,, T,, T,). (1.5) 

a = 1, 2; p : 1, 2, . 

where E is a small parameter of the order of the amplitudes and T,==&'Y(?z = 0, 1, 2. , .) 

serve as new independent variables. 
Taking into account that 

dldt = D, + zD1 + 90, + . . ., d2ldP = Do? + ~ED,,D~ + 9 (DIP + 

2D,D,) + 

substituting (1.5) into (1.4), and equating to zero the coefficients of E, e2, and .s3, we 

find that 

(1.8) 

We will seek a solution of (1.6) in the form 

*a1 =. Aa (T,, T2) exp (iLA"o) + --ia (T,, T,) exp (-i&To) (1.9) 

where A, are unknown complex functions and A a are the corresponding complex conjugate func- 
tions. 

Substituting (1.9) into (1.7) we find that 

D,‘q, + L1’zll = -2iL,D,A, exy (iLIT,,) - a,, IAl2 exp (2i&T,) i- 

4,2,1 - ~22 [A,' exp (2iczTo) + A,TBl i-cc 
Do2xz,, + ~2”.z22 = -2i5,D,A, exp (ig,T,) - 

al2 {A,-& axp Li (5r + &) TOI + A,A, exp [i (LX - 5,) T,l} + cc 

(1.10) 

where cc denote the complex conjugate parts of the preceding terms. 



2. We will consider the case of internal resonance, which occurs for &=225a. We will 

first assume that there are either two symmetric forms of vibrations or a symmetric form of 
vertical vibrations and a skew-symmetric form of bending and twisting vibrations taking part 
in the resonance. This implies that the coefficients au and a,% in (1.4) are non-zero. 
Since in this case the non-linearity of the equations determining the amplitudes manifests 
itself at the first step, it follows that to construct the solution, it suffices to restrict 
ourselves to terms of order E'. As a result, we arrive at relations (1.9) and Eqs.ll.10) 
(Eqs.(1.8) are not used), in which A, are functions of T, only. 

Taking into account that cl= 25% _t EU, where U is the frequency detuning, we consider 
the expressions on the right-hand sides of Eqs.(l.lO). 

The functions exp(i&T,) and exp (&TO) appearing in these expressions generate the 
secular terms, and so the coefficients of these functions must be equal to zero. As a result, 
we get 

2i&D,A, + azaA: exp (-ioT,) = 0, 

2ic,D,A, + a,dA,.4, exp (iaT,) = 0 

(2.1)‘, 

In (2.1) we replace the functions A, by &exp(iuTr), respectively. Then the expressions 
exp(+iuT,) disappear %rom the equations. We multiply the first equation by A, and the 
second by A,, and we find the conjugate equations. First, we add the two pairs of mutually 
conjugate equations to each other and we then subtract one from another. As a result of the 
procedure described above, expressing A, in the polar form A, = a, exp(icp,), we arrive at 
the following system of four differential equations in a, and qa: 

~,a,"' + a22a22a1 sin y = 0, &azz’ - al,as2al sin y = 0 

‘pl’ + u - ll,a,,~l-la,za,-l cos y = 0 

'pi + a - '/,a,,&+ar cos y = 0 (y = 2v, - CpJ 

(2.2) 

where the dots denote differentiation with respect to T,. 
From the first two equations of system (2.2) we find that 

a, = 1/-, aa = l/a,& (a&-'W(1 - S) 

r = -alztz-l (1 -E) Y%% sin y (W = a12 + a& (an&)-' aSa) 

where W is the energy of the system. 
From the third and fourth equations of (2.2) we get 

y' = -1/za12~2-1W (1 - 35) (IQ,)"': cos y - u 

Using the expression 

for the derivative and integrating the equation, we find that 

* 
cos ,’ = - -&+a+ l&u 

(2.3) 

(2.4) 

where G is an arbitrary constant, which can be determined from the initial conditions. 
Expression (2.4) determines the amplitude-versus-phase dependence for the vibrations 

subjected both to phase and amplitude modulation and described by Eqs.(2.2). 
To determine time dependence of the amplitudes and phases, it is necessary to substitute 

(2.4) into the third relation in (2.3), 
integrating the equation. 

from which one can find E as a function of Tl by 
UsinznheTfu;Tc;ion E (T,) in the first two formulae in (2.3) and 

in Eqs.(2.2), we find a, (T,) 
We will now assume that the resoian& involves either two skew-symmetric forms of 

vibrations or an asymmetric form of vertical vibrations along with a symmetric form of bending 
and twisting vibrations. The coefficients a,,, a,,, and at2 in (1.4) are equal to zero. In 
this case the system of Eqs.12.1) yields D,A, = 0, i.e., A, are independent of T,. To deter- 
mine the dependence of A, on T, it is necessary to invoke the terms of order s3 and use the 
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system of Eqs.(l.E). To avoid any secular terms which may appear in the solution of this 
system, one should equate the coefficients of exp(&i%,Tz) to zero. Hence, we obtain the 
system of equations 

Repeating for this system the operations which were applied to the system Of Eqs. (2.1), we get 

where the dots denote differentiation with respect to T,. 
On the basis of (2.5) the expressions for the generalized displacements can be written 

in the form 

where cpapao are the initial phases. 

3. For comparison we will consider the vibrations in the case of two modes of vertical 
vibrations and bending and twisting vibrations with similar frequencies interacting with each 
other, i.e., in the case where 

0" = 61, -+ aed (3.1) 

To analyse this case, we shall use the systems of Eqs.(1.6)-(1.8). In order that the 
solutions satisfying these systems do not contain any secular terms, it is necessary that the 
relations 

be satisfied. Here A, depend on T, and the dots denote differentiation with respect to T,. 
If A, is replaced by A,exp(iaT,) in Eqs.(3.2), then the expressions exp(&2ioT,j dis- 

appear. For the resulting system we repeat the operations which were applied in the case of 
the system of Eqs.(2.1) to find that 

(a,")' - li,r,a,2a,‘sin 2~ = 0, (a,Y' + '/,r,a,2a,2 sin 2y 7 0 

'pl ' - &a," - h,a," + '/J,a," COS 27/ = 0 (p = g$ - CpJ 

'pz 
* - h,a,* - ~,cz,~ f 11arza,2 cos 2y + U = 0 

(3.3) 

From (3.3) we have 

a, = VW& a2 = I/rJl-‘W (1 - Ej 

E' = v,r,mq (1 - E) sin 2y (W = aI2 I- rlrz-b,2) 
y' = V,J,W(1 - 2%) cos 2y - (h, - ha) WE, - 

rarl-x (h, - n,) w (1 - E) - c 

(3.4) 

(3.5) 

(3.6) 

(W is the energy of the system). 
Using in (3.6) the expression for the derivative y' = %dy/d% and taking (3.5) into 

account, after integrating the equation, we find the following amplitude-versus-phase depen- 
dence for the vibrations subjected to phase and amplitude modulation /I/: 
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where G is an arbitrary constant, which can be found from the initial conditions. 

Relation (3.7) determines the amplitude-versus-phase dependence for the vibrations sub- 

jected both to phase and amplitude modulation and described by Eqs.(3.3). 
To find the time dependence of the amplitudes and phases, it is necessary to substitute 

(3.7) into Eq.(3.5), from which one can obtain the dependence of 5 on T, by integrating 

the equation. Using the function E(T,) in (3.4) and (3.5), we can find a, (T,) and % (T,). 

4. As an example we consider the free vibrations of the following suspension bridges: 
"The Golden Gate" in San Francisco, whose length is 1281 m (Table 1) and "Vincent Thomas" in 

LOS Angeles, which is 557.5 m long (Table 2). In Tables 1 and 2 the resonance frequencies 

of these bridges and the frequencies of vertical and twisting vibrations, which are close one 

to another, are listed along with the corresponding modes. The twisting modes at resonance 

frequencies are not given in Table 1, since in all cases except the third one they are 

identical with the twisting modes for the characteristic frequencies which are close to one 

another. In the third case the character of the behaviour of the twisting mode with the fre- 

quency Cl:;= 2.4 resembles the character of the behaviour of the vertical mode with frequency 

6~;; given in Table 2. We note that there are no resonance modes in the frequency spectrum of 

the "Vincent Thomas" bridge /I/. 

Similar characteristic 
frequencies rad/s 

o',, = LGO 

a ,,.%L 

c.$ = 1.80 52::= i,o’j 

aA& +fx 

Table 1 

Resonance frequencies 

rad/s 

s 
006 = 2.62 

Table 2 

Similar characteristic frequencies 

rad/s 

o;Y= 2.88 s& 2.49 

We 

In the case of resonance interaction of the sixth symmetric mode of vertical vibrations 
with the first symmetric mode of twisting vibrations (Fig.2, (a-e) and also in the cases 
where the second skew-symmetric form of vertical vibrations is close to the first skew-sym- 
metric form of twisting vibrations (Fig.3, (a-e) and the fourth symmetric form of vertical 
vibrations is close to the second symmetric form of twisting vibrations (Fig.4, (a-e) the 
graphs of the dependence on T1 and T, of the quantities 5 (the solid lines) and 1-5 (the 
broken lines), which are proportional to the squares of the amplitudes al and n2, respectively, 
are constructed on the basis of the data in Table 1 for various initial values to (cos :'. = 1). 

From the graphs one can see that in the case of internal resonance for kO= I'? (Fig.2c) 
and in the case of similar frequencies wi,'= Rgf for EO= 0.17i (Fig.3b) steady-state conditions 
are realized, which can be characterized by constant amplitudes (frequency modulation). In 
both cases the direction of energy transmission changes to the opposite one at the correspond- 
ing instants of time as &, passes through the steady-state mode. Despite the fact that the 
behaviour of the amplitudes is qualitatively similar in these two cases, considerable quanti- 
tative differences can be observed. Namely, in the case of internal resonance the energy 
transmission from one of the subsystemsto the other is more intensive (the peak-to-peak scope 
of the amplitudes is larger) and faster (the time scale is smaller) than in the case of similar 
frequencies. 

For ~~~~~~ %( (Fig.4, (a-e) there are no steady-state conditions (there is no fre- 
quency modulation), and so there is no initial value E, such that the direction of energy 



830 

transmission changes as one Passes throuuh this value. It is seen that this case differs 
both qualitativel; and quantitatively from the case of internal resonance. 

a 

b 

Fig.3 

We shall analyse the stationary regimes a,=const both in the case of internal resonance 
and in the case of similar frequencies. It follows tram (2.2) that 1' =() and ~~'=cunst. 

Setting Q' = o @pie -:- 20) and O9 a, we find from(2.2) the relation 

(aw T 0) (0 * 0) - 'ical,a,,o,-'62,-'a" - u (4.1) 

Fig.4 

between the amplitude, the frequency, and the detuning. Next, using (1.5) and (1.9), we 
obtain the following expressions for the generalized displacements corresponding to the 
amplitude-versus-phase dependence (4.1): 

where x is the frequency of the non-linear vibrationssubjectto phase modulation only. 
The dependence of the square of the amplitude a on the magnitude of detuning G computed 

from (4.1) for various values of w is shown in Fig.5. The numerical values of w are written 
next to the corresponding curves and %a%2 (4e&)-' is taken to be equal to one. One can see 
that the character of the amplitude-versus-frequency dependence is determined by the degree 
of stiffness or softness of the frequency characteristics of the combined suspension system 
(a soft characteristic corresponds to a negative value of LO and a stiff characteristic cor- 
responds to a positive value). 

For aa = Con&, we find from (3.3) the relations 

between the amplitudes a, and n2, the frequency x _ rr,' Z= vz', and the detuning 0. 

(4.2) 

Fig.5 Fig.6 
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where 8 is the frequency of non-linear vibrations, which is the same for the vertical vi- 

brations and the bending and twisting vibrations. 
The results of the analysis of the vibrations subject to frequency modulation only based 

on the data in Tables 1 and 2 are collected in Table 3. It can be seen that the domain of 
existence of the solution determined by (4.2) and (4.3) is reduced to a point for every skew- 
symmetric characteristic form of vibrations (such vibrations are possible for one value of 
the frequency xl, and either extends to infinity or disappears completely for every symmetric 
form of characteristic vibrations. 

Therefore, in the case of similar frequencies the non-linear vibrations (4.3) subject to 
frequency modulation can be realized for the given values a,,,. Q,,,,, and (r only, while, as can 
be seen from (4.1), in the case of internal resonance such vibrations can be excited for any 
values of 0 nn, %rn and mT. These results are consistent with the graphs in Figs.2-4. 

Finally, we mention that the regime of vibrations in the case of similar frequencies 
turns out to be more stable under variations of the level of mistuning than the regime of 
vibrations in the case of internal resonance. This is evident from the graphs of the time 
dependence of the amplitude function envelopes for the following three values of detuning: 
F% -0.S x 111-' (the broken line), n 0 (the solid line), and &J o.sx 10-1 (the dash- 
dot line), which are given in Fig.6 for the case of internal resonance (n,(T,) 0.0') and the 
case of similar frequencies (ii,( 0.02). One can see that even a slight violation of the 
resonance condition co,, "!I,, results in the maxima of the amplitude functions being immedi- 
ately reduced to zero. 
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STRESSES IN ELASTIC CONICAL TUBES OF TRANSVERSELY ISOTROPIC MATERIALS WITH 

SPHERICAL ANISOTROPIES UNDER TEMPERATURE AND FORCE LOADINGS* 

I.V. PANFEROV 

Analytic solutions are proposed for a number of new problems on 
determining the state of stress of a transversely-isotropic hollow cone 
with spherical anisotropy. An exact solution of the problem of the 
axisymmetric deformation of a long conical tube (or continuous cone) 
from an elastic transversely-isotropic material with spherical 
anisotropy subjected to an axial force is obtained in a spherical, coor- 
dinate system I<, y, 0; the material axis of symmetry is directed along 
the spherical radius R. A rigorous solution is given of the problem of 
the uniform heating of a conical tube of transversely-isotropic 
material with spherical anisotropy for particular values of Poisson's 
ratios; the material axis of symmetry is directed along the II-axis. For 
arbitrary Poisson's ratios an asymptotic solution is found for the 
temperature problem for a tube with small conicity. 


